

SSKT160-08 Thyristor Modules, 160A

Circuit Diagram

Features

- Blocking voltage: 800V
- Heat transfer through aluminum oxide DBC
- Ceramic isolated metal baseplate
- Industrial standard package
- Thick copper baseplate
- 2500 VRMS isolating voltage

Typical Applications

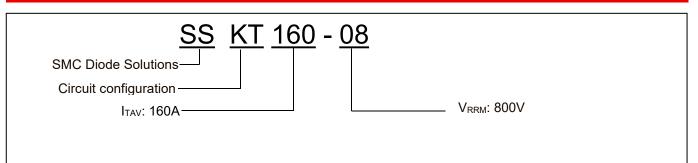
- Power Converters
- DC motor Control and Drives
- Temperature control
- Lighting control

Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Characteristics	Symbol	Condition	Max.	Units	
Storage junction temperature range	T _{stg}	-	-40 - 125	°C	
Operating junction temperature range	Tj	-	-40 - 125	°C	
Repetitive peak off-state voltage(Tj=25 $^\circ\!\!\mathbb{C}$)	Vdrm	-	800	V	
Repetitive peak reverse voltage(Tj=25 $^{\circ}$ C)	V _{RRM}	-	800	V	
Average On-State Current	Itav	Sine 180℃;Tc=85℃	160	A	
Surge forward current	I _{TSM}	t=10ms TJ=45℃	5400	- A	
		t=10ms TJ=125℃	5000		
Maximum I ² t for fusing	l ² t	t=10ms TJ=45℃	145000	A20	
		t=10ms TJ=125℃	125000	A ² s	
Isolation Breakdown Voltage(R.M.S)	Visol	A _{c.} 50HZ; R.M.S.; 1min	2500		
		Ac.50HZ; R.M.S; 1sec	3500	- V	
Mounting Torque	Mt	To terminals(M5)	3±15%	Nm	
	Ms	To heatsink(M6)	5±15%		
Maximum critical rate of rise of off-state voltage	dV/dt	T _J =125℃,V _D =2/3V _{DRM}	1000	V/µs	
Module(Approximately)	Weight		160	g	

• http://www.smc-diodes.com - sales@ smc-diodes.com •

RoHS 🗭


Electrical Characteristics(Tj=25 °C unless otherwise specified)

Parameters	Symbol	Test Condition	Тур.	Max.	Unit
Maximum Repetitive Peak ReverseCurrent/ Maximum Repetitive Off-state Current	I _{RRM} / I _{DRM}	Tj=125℃ Vrd=Vrrm		40	mA
On state threshold voltage	Vто	For power-loss calculations only TJ=125℃		0.85	V
Maximum Value of on-state slope resistance	гт	TJ=125℃		1.5	mΩ
Maximum gate voltage required to trigger	V _{GT}	TJ=25℃, VD=6V		3.0	V
Maximum gate current required to trigger	I _{GT}	TJ=25℃, VD=6V		150	mA
Maximum gate voltage that will not trigger	V _{GD}	Тј=125℃, Vd=2/3Vdrм		0.2	V
Maximum gate voltage that will not trigger	I _{GD}	Тј=125℃, Vd=2/3Vdrм		10	mA
Maximum Latching current	IL.	Тј=25℃, Ід=1.2Ідт	250	1000	mA
Maximum Holding current	IH	TJ=25℃,I⊤=1A	200	400	mA
Gate controlled delay time	tgd	TJ=25℃,IG=1A ,diG/dt=1A/us		1	μs
Gircuit commutated turn-off time	tq	TJ=125℃	1	00	μs

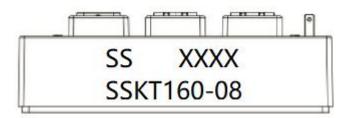
Thermal Resistances

	Symbol	Condition	Values	Units	
Maximum internal thermal resistance, junction to case	Rth(j-c)	Per thyristor/ Per module	0.17/0.085	°C/W	
Typical thermal resistance, case to heatsink	Rth(C-S)	Per thyristor/ Per module	0.10/0.05		

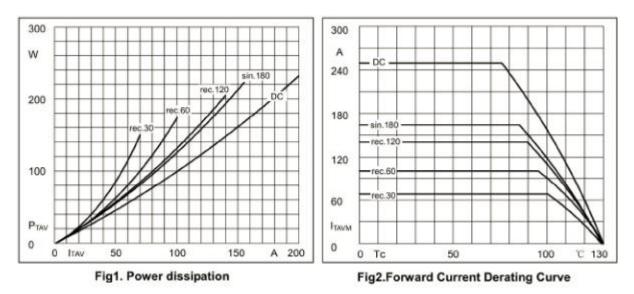
Ordering Information

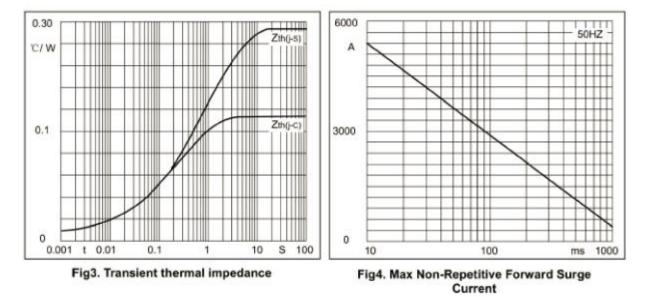
Where XXXXX is YYWW

= Part name


= Year

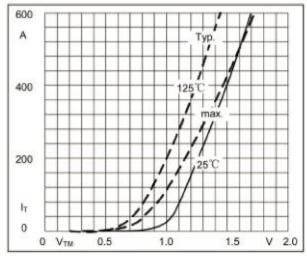
= Week


SSKT160-08


YY WW

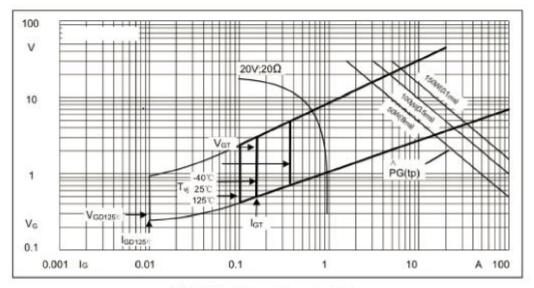
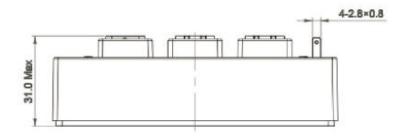
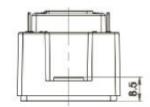
Marking Diagram

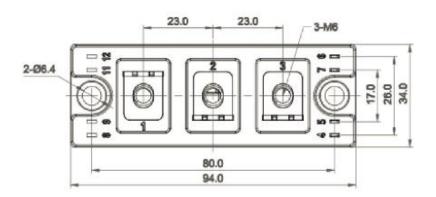
Ratings and Characteristics Curves



China - Germany - Korea - Singapore - United States http://www.smc-diodes.com - sales@ smc-diodes.com -

RoHS 🗭


Fig6. Gate trigger Characteristics

Mechanical Dimensions T2-1

SSKT160-08

RoHS 🗭

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use

at a value exceeding the absolute maximum rating. 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.

6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..